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Abstract: Dual-phase (DP) steels are an important family
of steel grades widely used in the automotive industry,
aerospace, ultra-supercritical generating units, etc.Reducing
costs throughout the process from raw material preparation
to experimental design is a critical challenge that needs to
be addressed urgently. This paper develops an effective
active machine learning (AL) method to explore and exploit
new DP steels with excellent mechanical properties. A
simple case of hardness optimization is first reported to
validate the reliabilityand efficiency of the AL method.
Simultaneous enhancement of strength and plasticityis then
realized by fast learning in a vast design space free of Co,

finding several desired low-cost DP steels. More
importantly, convenient application software has
beensuccessfully  developed, which has practical

significance for the engineering application of the AL
method.

Keywords:Dual-phase steels; active learning, mechanical
properties.

1 Introduction

DP steels have potentialmechanical properties, making
them widely applied in the automotive industry, aerospace,
ultra-supercritical generating units, etc. Uncovering the
complicated interaction between compositions/processing,
microstructures, mechanical properties is extravagant in
terms of time andmoney by traditional trial-and-error.
Therefore, it is necessary to develop a new method to
accelerate the design of DP steels.

A potential solution to the problem above is machine
learning (ML),which can quickly explore the complex
composition space to improve the microstructure and
mechanical properties. However, the prediction was only
crediblefor the samples near the training data. To solvethis
problem, an adaptive active learning (AL)method is a wise
direction for the iterative experiments.To the design of DP
steels, one is bound to meet a sparse and small dataset. The
efforts should beperformed in early iterative experiments
before adaptive sampling to balance data distribution as
much as possible (reducethe overall o of ML prediction),
which may be beneficial for the subsequent search for the
global optimum.

In this study, an improved AL method is proposed, and
validated for its ability in finding global optimum by only
several iterations, then used to design new
strength-plasticityenhanced DP steels free of Co.

2 Experimental procedure and AL method
Experimental procedure

The DP steelswere prepared using a mold of a WKII model
vacuum arc melting furnace. Homogenization, hot-rolling,
and heat treatment were executed sequentially to ensure
appropriate microstructure.

3 AL method

We trained a Gaussian process regression (GPR) model.
Employing the model, we then ranked the samples by their
o of prediction. Three top-ordered candidates were
recommended to experiment and then feedback to the initial
set, which ensures a rapid reduction of o on the design
space.This procedure was repeated several times until GPR
generated a stable prediction for the unexplored alloys.
Subsequently, EI was used to explore the region wherethe
alloys have a superior property than the best-so-far until
anoptimal candidate was found.To enhance the strength and
plasticitysimultaneously, some expert experience is brought
in ML.

4 Result and discussion

Validation of the AL method in finding global optimum
Executing the AL method, we explored a total of 27alloys
in the designspace. As shown in Fig.la, we first extracted
the candidates with large o in the 1-6iterations, their
hardness varies over a widerange (= 10-55 HRC). Fig.1b

reveals that the predicted o ofthe ensembles in the virtual
set rapidly decreases and convergesto the position where
the mean is =5 during the 1-4iterations. Interestingly, the
curves seem to change slightly in the 4—6iterationsand a
stable plateau of ¢ occurs, demonstrating negligible
benefits from the sequentially recommended alloys
according to exploration.At the first exploration stage, the
variation of average EI with iteration is ruleless, as shown
in Fig. 1(c). When the extremely sparse region in the design
space is filled, the new recommended alloys tend to
minimize o, and EI is therefore reduced, just as displayed
in the 4-6 iterations in Fig. 1(c). Once the improvement of
data distribution is completed, exploitation starts, the
reduction of EI decreases, and the new alloy approaches the
global optimal, as depicted after the sixth iteration in Fig.
1(c). Notsurprisingly, the mean absolute error (MAE)
between the predictions and the measurements quickly
drops in iterations 1-4, asshown in Fig.1(d) but fluctuates
slowly in iterations 4-6, revealing that the alloys
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recommended by ranking ¢ haveinsignificant contribution

to the improvement of the predictionprecision on the design

space after the fourth iteration, as shown in Fig. 1(f). MAEs

in the last three iterations are thus close to 0.
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Fig.1 Design process of DP steels with the highest HRC. (a)
Experimental HRC vs iterations. (b) Frequency density of ¢ in 9
iterations. (c) El vs iterations. (d) MAE vs iterations.(e) Predicted

HRC of Fe-0.05C-12Cr-1Ni-Co-Mo DP steels.(f) Experimental

validation of the designed alloys.

5 Application of the AL method to design strength-
plasticity enhanced DP steels free of Co

The experimental dataset with the variates of Ti, Mo and W
was constructed, and GPR model was used to learn the
relationship between chemical compositions and the
properties (UTS and elongation at 650 “C), as shown in Fig.
2(a)-(f). Our designed steels show the highest product as
shown in Fig. 2(h), followed by the 15Cr steelsmarked by
the gray arrow. In addition, the product of steel D3 is156%,
31%, and 62% higher than the best ones in 9Cr, 15Cr,
and20Cr steels, respectively. The product of V1 shows an
increase ofapproximately 33% compared to that of the steel
marked by thecyan arrow. Moreover, our designed steelsare
free of Co and contain low Ni content (5 wt%—8 wt%), and
the exploitation cost is thus lower thanthat of traditional DP
steels.

6 Conclusion

The design, validation and application of the AL method
are successfully realized by finding new DP steels free of
Co. The main conclusions are summarized as follows:

1. An accurate and high-efficiency AL method is
developed, which achieves both data distribution
optimization and high-property alloy exploitation.
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2. The DP steel with the highest hardness was
successfully designed from a given composition space,

®- 0.6Ti-0.3W
& 0.6T-1.2W
—8- 1.8T-0.3W
~#- 1.8T-1.2W

Elongation (%)

0.6Ti-0.3Mo
0.6Ti-1.2Mo
1.8Ti-0.3Mo
1.8Ti-1.2Mo

Elongation (%)

& 0.3Mo-0.3W

s —&- 0.3Mo-1.2W

= [ -8~ 1.2Mo-0.3W

%3 S -8~ 1.2Mo-1.2W
2 3
5 5
]

(h)

UTS (MPa)
Product of
UTS and elongation (GP-%)

28 42
Elongation (%)
Fig.2 Design process of DP steels free of Co with enhanced
strength and plasticity. (a)-(f) Predicted effect of Ti, Mo and W
contents on UTS and elongation. (g) UTS vs elongation and (h)
Product of UTS and elongation vs elongation for the typical 9-12Cr,

14Cr, 15Cr and our designed steels.
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which uncovers the capability of global optimization of the
AL method.
3. Several new low-cost 15Cr DP steels are designed.
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