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Abstract: In this work, molecular dynamics simulations
were used to investigate the effects of monolayer graphene
(GR) with varying orientation angles on Mg-9Al-1Zn
(AZ91 wt.%) on mechanical properties of magnesium alloy.
The simulation results show that Young's modulus and
tensile strength of AZ91/GR composites decrease gradually
with the increase of the orientation angle of the 1LG. The
Young's modulus and tensile strength of AZ91/GR
composites can be improved by the 1LG orientation angle
of 0°~10°, where the two are enhanced by 21.7% and 19.
7% respectively, at an orientation angle of 0°. However, the
Young's modulus and tensile strength of 1LG are decreased
for orientation angles of 20°~90°. It can provide some
technical guidance for the experimental process design of
AZ91/GR composites.
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1 Introduction

The research and development of graphene magnesium
matrix composites can provide new solutions for the
application of lightweight materials. In recent years,
researcher found that the GNPs were aligned along the
tensile direction, enhancing the strength of the
graphene/magnesium matrix composites [1, 2]. However,
the contribution of GNPs perpendicular to the tensile
direction was minimal, limiting their ability to enhance the
overall mechanical properties. The impact of graphene
nanosheets at different angles to the stretching direction
was not specifically addressed with current experimental
equipment in detail. This paper focuses on modeling
AZ91/GR composites with graphene nanosheets of varying
orientation angles using molecular dynamics simulations to
understand the tensile deformation mechanism.

2 Experimental procedure

This work is carried out using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[3]. Ten groups of tensile models of AZ91/GR magnesium

alloy composites with different orientation angles (= 0°,

10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°) were designed in
this study. The Mixed Element Atomistic Method (MEAM)
[4] potential function is used in MD simulations to describe
the interatomic interactions in Mg-Al-Zn alloys. At the
same time, the interatomic interaction of GR is described by
the Adaptive Intermolecular Reaction Empirical Bond
Order (AIREBO) potential function [5]. In addition, the
interactions between Mg-Al-Zn alloys and GR were
described using the Lennard Jones (L-J) potential function
[6] with the cutoff radius set to 1 nm. The specific energy
and distance constants are as follows:

emg.c = 0.0027eV,0pg.c =3.5015A; £5,.c = 0.035078eV,
oarc = 3.0135; 7, = 0.00265699¢V, 6, = 3.9735A.

3 Result and discussion

Fig.1(a) shows stress-strain curves for AZ91/GR
composites and AZ91 magnesium alloy with graphene
monolayers with different orientation angles. The results
show that the tensile strength of GR increases to 4.66 GPa
at orientation angles of 0°and 10°, while it decreases when
the angles range from 20° to 90°. In all models, the stress
initially increases linearly with strain, following Hooke's
law. The slope of the stress-strain curve during the initial
elastic stage represents Young's modulus of the AZ91/GR
composites. The results presented in Fig.1(b) indicate that
Young's modulus of AZ91/GR magnesium composites is
higher and the likelihood of deformation is reduced when
the orientation angle of GR is at 0°,10°and 20°. Conversely,
as the orientation angle is 30°'~90° , Young's modulus
decreases, leading to an increased likelihood of deformation.
The Young's modulus of AZ91/GR magnesium alloy
composites decreases as the orientation angle increases and
tends to increase after surpassing 60 , but remains lower
than Young's modulus of the AZ91 magnesium alloy. The
results presented in Fig. 1(c) demonstrate that incorporating
GR can improve the tensile strength of AZ91 magnesium
alloy to 4.66 GPa. Furthermore, it is observed that as the

- 458 -


mailto:zhaoyuhong@nuc.edu.cn

N

@ The 75th World Foundry Congress
October 25-30, 2024, Deyang, Sichuan, China

Developing Foundry

Part 5: Metal Matrix Composite Materials

orientation angle increases, there is a gradual decrease in
the tensile strength.
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Fig.1 (a) The stress-strain curves of AZ91 alloy and AZ91/GR
composites were measured at different orientation angles of GR; (b)
The Young's modulus of the composite material depicted in the fig.

(a); (c) The tensile strength of the composite material depicted in
the fig. (a)
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Fig.2 The evolution morphology of AZ91/GR composites with
different orientation angles of GR under critical strain.

The evolution of morphology in AZ91/GR composites with
varying orientation angles of GR under critical strain is
depicted in Fig.2. The critical strain of AZ91/GR
composites shows a distinct correlation with the orientation
angle of GR. Specifically, a larger orientation angle of GR
results in lower stress at the ends of the GR and a reduced
critical strain. A simplified model is employed to elucidate
the impact of orientation angle on the behavior of GNPs.
The forces acting on the GR are resolved into components

of - ( Dand €-cos( ), where 0° < 30°, causing
the GR to extend along the cos ( )direction. As 30" <
90°, ( ) becomes dominant, leading to the formation of

local wrinkles in the graphene structure. This results in the
bending and debonding of the GR in AZ91/GR composites.
The simulation reveals that the critical orientation angle for
GR is 30°. Furthermore, the critical strain of the AZ91/GR
composite matrix decreases as the orientation angle of the
GR increases, consequently reducing the load-bearing
capacity of the GR.

4 Conclusion

(1)The strength of AZ91/GR-0° and AZ91/GR-10° single
crystal composites surpass that of the AZ91 matrix
magnesium alloy. As the orientation angle of GR increases
(30°~90°), debonding occurs, leading to reduced tensile
strength and increased susceptibility to deformation in
AZ91/GR composites.

(2)The fracture time of AZ91/GR single crystal
composites advances with higher orientation angles of GR.
The impact of GR on the strength of AZ91/GR single
crystal composites is primarily determined by the
orientation angle of GR.
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