On the Preparation and Properties of AI-7Si-0.4Mg Matrix Composites Reinforced by In-situ Intragranular AI₃Ti and Intergranular TiB₂

Cuicui Yang¹, Zhiwu Dong¹, Zhiwei Liu^{1,*}

1. State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi Province 710049, P.R. China

*Corresponding address: e-mail: liuzhiwei@xjtu.edu.cn

Abstract: In particulate reinforced Al matrix composites (PRAMCs), the micro-sized ceramic particles tend to segregate at the α -Al grain boundary, resulting in a sharp drop in the ductility of the composite and thus restricting its application. It is promising to improve the ductility of the TiB₂-containing composites while maintaining high strength by introducing the intragranular Al₃Ti particles to replace part of TiB₂ particles. In the present work, (Al₃Ti+TiB₂)/Al-7Si-0.4Mg composites were prepared by using the ultrasound assisted in-situ casting. The results showed that most of modified Al₃Ti particles were inside the α-Al grains while TiB₂ particles were mainly located at the α -Al grain boundaries. Under the ultrasonic stirring, both particles were uniformly distributed in the Al allov matrix. Compared with Al-7Si-0.4Mg alloy, the (3Al₃Ti+2TiB₂)/Al-7Si-0.4Mg composite exhibited the best comprehensive mechanical properties, and its yield strength, ultimate tensile strength, and elongation (254MPa, 310MPa, and 3.8%) were improved by 21.0%, 21.6%, and 111%, respectively. This work provides a novel composite design approach to achieve a strength-ductility synergetic improvement.

Keywords: Al₃Ti; TiB₂; Hybrid reinforced particles; Microstructure; Mechanical properties

1 Introduction

PRAMCs have been widely used in the automotive and aerospace industries due to its specific lightweight and high strength characteristics ^[1]. The reinforced particles of PRAMCs include ceramic (TiB2 [2], TiC [3], etc) and intermetallic compound (Al₃Ti^[4], Al₃Zr^[5], etc). TiB₂ particles in as-cast PRAMCs tend to aggregate together in the Al melt, resulting in the microstructure with the agglomerated TiB₂ particles at the α -Al grain boundary, which is detrimental to the mechanical properties of PRAMCs and thus restricts their application ^[6]. In contrast, during the cooling and solidification process of Al₃Ticontaining Al melt, the peritectic reaction occurs, in which Al₃Ti particles are used as the heterogeneous nucleation sites of α -Al grains ^[7]. In this case, Al₃Ti particles are located within the α -Al grains, which will not significantly deteriorate the ductility of PRAMCs.

Hence, in order to achieve the superior strength-ductility synergy of TiB_2 -containing PRAMCs, it is necessary to replace part of TiB_2 particles with Al_3Ti particles.

Moreover, ultrasound treatment contributes to promote the uniform dispersion of small-sized particles ^[4,8]. In the present work, the dual-phase particles (Al₃Ti+TiB₂) with different rations were introduced into the Al-7Si-0.4Mg matrix (wt.% unless otherwise noted) to prepare the composites by the ultrasound assisted in-situ casting. Furthermore, the phase, microstructure and tensile properties of T6-composites were investigated.

2 Experimental procedure

The (xAl₃Ti+(5-x) TiB₂)/Al-7Si-0.4Mg composites (Table 1) were fabricated by using Al-7Si-0.4Mg matrix (pure Al (99.7%), Si (99.9%) and Mg (99.9%)), Al-10Al₃Ti (Al-K₂TiF₆ system) and Al-10TiB₂ (Al-K₂TiF₆-KBF₄ system) master composites as raw materials. The detailed fabricating process of the master composites can be referred to our previous research ^[4,8]. Al-10TiB₂, pure Al and Si were initially melted at 750°C for 30min within a graphite crucible in a high-frequency induction furnace. Then Al-10Al₃Ti and pure Mg were added into the melt when the temperature was stabilized at 700°C. After that, the ultrasound probe (1.6kW, 20kHz) was immersed into the melt for 5min with the aim of making Al₃Ti and TiB₂ particles distribute uniformly in the melt. Finally, the composite melt was poured into a graphite mold to obtain an ingot. Then all ingots were T6-heat treated: solution treatment (540°C 4 h, 60°C water quenching) + aging treatment (170°C 7 h, air cooling).

Table 1. Com	position of	the com	posites	(wt.%)	

Samples	Al ₃ Ti	TiB ₂	Matrix
0-0#	0	0	
5-0#	5	0	
4-1#	4	1	Si: 7
3-2#	3	2	Mg: 0.4
2-3#	2	3	Al: Bal.
1-4#	1	4	
0-5#	0	5	

The phases and microstructure of samples were examined by X-ray diffractometer (XRD, Bruker D8 ADVANCE) and scanning electron microscopy (SEM, SU3500). Flat specimens (gauge length×width×thickness: $20 \times 4 \times 3.5$ mm) were tensile tested by using a testing machine (CMT5305, MTS, USA) equipped with an extensometer at a constant cross-head speed of 0.5mm/min.

3 Result and discussion

The 75th World Foundry Congress

October 25-30, 2024, Deyang, Sichuan, China

1. Phase analysis and microstructure

Figure 1 shows the XRD patterns of T6-samples. As shown in Figure 1, Al, Si, in-situ formed Al₃Ti and TiB₂ phases were found in the composites. Owning to the low Mg content (0.4%), the diffraction peak of Mg₂Si cannot be detected in the matrix. The SEM images of the composites are shown in Figure 2(a-f). It can be clearly seen that in Al₃Ti-containing composites, the in-situ formed Al₃Ti particles were distributed uniformly in the Al matrix and most of them were located inside the α -Al grains, which showed they could act as heterogeneous nucleating sites ^[7]. Furthermore, most of Al₃Ti particles were blocky in shape and a few of them had a short rod-like morphology. It should be noted that no large-sized flaky Al₃Ti particles were found in the composites. Here, the formation of modified Al₃Ti particles with uniform distribution in the matrix was attributed to the fragmentation and dispersion of Al₃Ti particles by high-intensity ultrasound ^[4]. In TiB₂containing composites, small-sized TiB₂ particles were uniformly dispersed along the grain boundaries of a-Al grains, which is a result of the particles pushing effect during the cooling and solidification process of the composite melt. Similarly, ultrasonic treatment promoted uniform dispersion of TiB₂ particles ^[8].

Fig.2 SEM (BSE) micrographs of the composites: (a) 5-0#; (b) 4-1#; (c) 3-2#; (d) 2-3#; (e) 1-4#; (f) 0-5#

2. Tensile mechanical properties

Figure 3 presents the typical tensile results of T6-samples. As displayed in Figure 3, with the increase of TiB₂ content, the values of yield strength (0.2% YS), ultimate tensile strength (UTS) and elongation (El) of T6-samples first increased and then decreased. The mean values of 0.2% YS, UTS and El of the 3-2# composite was 254MPa/310MPa/3.8% (compared to 0-0# matrix alloy,

improved by 21.0%/21.6%/111%), which had the best mechanical properties. The improvement of comprehensive mechanical properties of dual-phases reinforced composites was attributed to grain refinement, load-bearing effect, coefficient of thermal expansion mismatch and Orowan strengthening. Furthermore, it can be obviously observed that Al₃Ti contributed to the improvement of the ductility while TiB₂ was beneficial for enhancing the yield strength of composites.

4 Conclusion

In the present work, the dual-phase particles (intragranular-Al₃Ti+intergranular-TiB₂) reinforced Al-7Si-0.4Mg matrix composites with high strength and good ductility were successfully prepared using the ultrasound assisted in-situ casting. Most of modified Al₃Ti particles were inside the α -Al grains, while TiB₂ particles were mainly located at the grain boundaries of α -Al grains. Both particles were uniformly distributed in the Al alloy matrix as a result of the ultrasonic dispersion. Comparing with the alloy matrix, the (3Al₃Ti+2TiB₂)/Al-7Si-0.4Mg composite exhibited the best comprehensive mechanical properties, and its 0.2% YS/UTS/El (254MPa/310MPa/ 3.8%) were improved by 21.0%/21.6%/111%. This work provides a novel composite design approach to achieve a strength-ductility synergetic improvement.

Acknowledgments

The authors thank the National Natural Science Foundation of China (Grant Nos. 52174372, 51974224 and 51604211) for supporting the work.

References

- V. Chak, H. Chattopadhyay, T. L. Dora. Journal of Manufacturing Processes, 2020, 56: 1059-74.
- [2] K. Zhao, M.M. Liu, H.J. Kang, et al. Journal of Alloys and Compounds, 2022, 916: 165461.
- [3] S.H. Pan, J. Yuan, K.Y. Jin, et al. Materials Science and Engineering: A, 2022, 840: 142992.
- [4] C.C. Yang, Z.W. Liu, Q.L. Zheng, et al. Journal of Alloys and Compounds, 2018, 747: 580-90.
- [5] P. Pandee, P. Sankanit, V. Uthaisangsuk. Materials Science and Engineering: A, 2023, 866: 144673.
- [6] Y.H. Wu, L.W. Li, H.J. Kang, et al. Materials Characterization, 2024, 208: 113652.
- [7] R. Gupta, G.P. Chaudhari, B.S.S. Daniel. Composites Part B: Engineering, 2018, 140: 27-34.
- [8] J. Liu, Z.W. Liu, Z.W. Dong, et al. Journal of Alloys and Compounds, 2018, 765: 1008-17.